
Capturing Webcam through VB6.0

Author: Punit Ganshani
Email Address: punit@ganshani.com
Downloaded from http://www.ganshani.com
Published In: DeveloperIQ, September 2005, Asia
__

While I write this article, I am referring to a real-time system that
captures the images when needed through a web cam, placed in one
corners of the library. The need of the hour was to keep a central
monitoring system so that the librarian could have a sight over the
people in the library and their behavior.

And while I was designing this system, the first important step was to
activate a webcam through my software that could show the frames
capture the images when needed. These images could be stored on
the hard disk and viewed through and picture editor. The user should
have the facility to save the image in any of the three universal image
formats i.e. Bitmap, GIF and JPG. After development phase of the
same, the goal was to have automatic capturing of the images and
storing it with file name of the format:

c:\lbsystems\images\date\pb####.jpg

The desired frequency of capturing an image was once in every 5
minutes. Thus in a day having 24 hours having 1440 minutes, 288
pictures can be captured. So the numbering could follow a pattern
from 0000 to 0287 having filename pb0000.jpg to pb0287.jpg

In this article, I am presenting a part of my software which concerns
capturing a picture from webcam when the user intends to do the
same. I leave the further programming part to the user which is
application dependent.

Using Dynamic Link Libraries

Visual Basic can communicate directly to Windows Application
Programming Interface (API) which are defined in dynamic link

libraries (abbreviated as DLL’s) that are stored in \windows\system
directory.

Some of the core DLL files Windows supports are listed in the table 1.

Table 1: DLL supported by Windows

Sr. No DLL Applications it supports
1 user32 User Interface Routines
2 winmm Multimedia
3 advapi Security & Registry Calls
4 gdi32 Graphics Device Interface
5 kernel32 32-bit Windows applications
6 shell32 32-bit Shell applications

However we need not remember the DLL and their function because
they are directly being called by API. The functions of API can be
viewed using API Viewer (a tool provided in Microsoft Visual Studio
Package) and is shown in Figure 1.

Figure 1: API Viewer - Win32api.txt

Let’s see the Item : SendMessage which we shall in our program.

The SendMessage is defined in API as under:

Public Declare Function SendMessage Lib "user32" Alias
"SendMessageA" (ByVal hwnd As Long, ByVal wMsg As Long, ByVal
wParam As Long, lParam As Any) As Long

Let’s understand the syntax of this function.

Function Name: SendMessage
Actual Windows Function Name: SendMessageA
DLL: user32
Arguments & their types:
hwnd handle Handle of the Window
wMsg unsigned int Message to be sent
wParam unsigned int Message-specific information
lParam long Message-specific information

The other API reference that we shall use is defined in AVICAP32.DLL
and is called as capCreateCaptureWindow. The function call is as
under:

Public Declare Function capCreateCaptureWindow Lib "avicap32.dll"
Alias "capCreateCaptureWindowA" (ByVal lpszWindowName As String,
ByVal dwStyle As Long, ByVal X As Long, ByVal Y As Long, ByVal
nWidth As Long, ByVal nHeight As Long, ByVal hwndParent As Long,
ByVal nID As Long) As Long

Public mCapHwnd As Long

Now let’s see the core programming of webcam using these API calls.

Designing Form & Coding

The form designed can be considered to have following elements:

Control Number of objects Name
Picture Box 2 picCapture
Timer 1 tmrMain
Common Dialog 1 CommonDialog
Command Buttons 5 cmdStart

cmdStop

cmdSaveAs
cmdCopy
cmdExit

However to provide alignment, we can introduce frames or picture
boxes. I have kept two additional picture boxes; one of it has the
command buttons, the other one has the common dialog.

We can avoid the Start button that is used to initialize web cam and
start the webcam as soon as the form is loaded. Similarly Stop button
can also be omitted as the picture can also be captured and saved by
Save As button. Initially, Stop button is kept disabled.

This Save As option can be later modified to capture images at a
regular interval without requiring user interface and in that case, we
can keep the form as small as an Exit button (the picture box can be
kept invisible too!) The timer is used to refresh webcam images.

Let us not analyze the code.

Private Sub cmdStart_Click()
mCapHwnd = capCreateCaptureWindow("WebcamCap", 0, 0, 0, 320,
240, Me.hWnd, 0) 'Get hWnd for webcam so we can use it
DoEvents: SendMessage mCapHwnd, 1034, 0, 0
 'Capture from webcam
tmrMain.Enabled = True 'Enable timer to refresh webcam images
cmdStop.Enabled = True 'Make stop button enabled
End Sub

The first statement calls a API function and as per the syntax
mentioned before,

WebcamCap is the window name, the first ‘0’ corresponds to the style,
second and the third ‘0’ indicate x and y co-ordinates of capturing
window, 320 is the width of capture window and 240 is the height,
me.hwnd is the handle of the current window and the last ‘0’ is the
Window Identifier.

The style of the window can be set by CreateWindowEx(). The
function capCreateCaptureWindow returns a handle of the capture
window if successful or NULL otherwise.

We then send a specific message to a window. This message code is
1034. By the number 1034, the computer interprets connection of
webcam.

The similar concept is used to stop the webcam. The code will appear
as:

Private Sub cmdStop_Click()
tmrMain.Enabled = False 'Disable refreshing of webcam images
DoEvents: SendMessage mCapHwnd, 1035, 0, 0
 'Stop capturing of images from webcam
cmdStart.Enabled = True 'Make start enabled
cmdStop.Enabled = False
End Sub

We have used a common dialog control through which we can save the
image file when clicked on Save As. So, the code for saving the image
will be:

Private Sub cmdSaveAs_Click()
CommonDialog.Filter = "Jpeg (*.JPEG)|*.JPG"

'Supported file-type is JPG since it is compressed format
CommonDialog.ShowSave

'Show save dialog
SavePicture picCapture.Image, CommonDialog.FileName

‘Save picture on any drive configured on PC
‘this also includes established LAN drives

End Sub

The first line of the code for saving is used to define the default type
of file that can the user can give. However, if the user wishes to save
it by some other extension, he needs to type the same.

Some applications require capturing the images and copying it to
clipboard. To do this job, we need to first capture the frame where the
image is being displayed and then copy it to clipboard. This two stage
procedure can be summed up as:

Private Sub cmdCopy_Click()
SendMessage mCapHwnd, 1084, 0, 0

'Capture frame from webcam
DoEvents: SendMessage mCapHwnd, 1054, 0, 0
 'Stop capturing of images from webcam
End Sub

The programmer needs to take care that the co-ordinates of the frame
are defined correctly. It should remain the same through-out the
program and hence it is advisable to define these constants globally.
Here 1084 is the code for getting the frame and 1054 for copying the
image.

The most important part which is refreshing the images captured by
webcam so that it appears as if the stream is being captured
continuously. This can be done by the use of timer tmrMain.

Private Sub tmrMain_Timer()
On Error Resume Next
cmdCopy_Click
picCapture.Picture = Clipboard.GetData

'Paste captured frame from clipboard
End Sub

The algorithm for saving the file automatically can be implemented in
this format. The interval of timer (in milliseconds) needs to be set
when the form starts.

Dim counter As Integer
SavePicture picCapture.Image, "c:\lbsystems\images\date" & Counter
& ".jpg"
Counter = Counter + 1

With this, one can easily capture any stream of data from webcam but
when the form is unloaded or when the program is ended, the webcam
is still in the process of connection. This should be terminated so that
memory as well the processor is freed.

Private Sub cmdExit_Click()
DoEvents: SendMessage mCapHwnd, 1035, 0, 0
 'Stop webcam capturing
Unload Me
End Sub

When an interrupted termination occurs, this program will again not be
able to free the memory. So a piece of code needs to be written in
Form_Unload

Private Sub Form_Unload(Cancel As Integer)
DoEvents: SendMessage mCapHwnd, 1035 , 0, 0

 'Stop webcam capturing
End Sub

With that, one module of capturing webcam is all set to be
implemented in any project.

